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DYNAMIC MIXED MODE FRACTURE

A. S. Kobayashi and M. Ramulu

Department of Mechanical Engineering, University of Washington

ABSTRACT

A newly developed data reduction process was us(,d t reeva wo te, (48l i I

photoglAstic results and to extract dynamic stress intensity f acto Vs, K.y
and KY , associated with curved and branched cracks in fracturing Hlmdajite -

100 piltes. A branching stress intensity factor approximately 5 times the
fracture toughness was identified for thi materA.. Moderate to severe
crack curvings were associated with a KI'y and KIt rat.io a- low as (.(05, hot
with positive remote stress component, ,

INTRODUCTION

Two dimensional dynamic photoelasticity has been used by Daily and his
associates [1,2] and by the author and his associatn[3,4] to determine ex-
perimentally the dynamic stress intensity factor KT- , surrounding a propa-
gating crack and to establish a dynamic fracture toighness, K , versus crack
velocity A, relation which may control dynamic fracture. Thi;Duse of dynamic
photoelasticity in studying dynamic fracture has been eloquently described by
J. W. Dally in his recent article [1]. As noted by Dally, the dat8 reduction
procedure used by most investigators in the past for calculating KIYn, from
the transient isochromatics surrounding the propagating crack tip, was re-
stricted to Mode I crack tip deformation. A theoretical, near-field, static
isochromatics was first equated to the recorded experimental dynamic isochro-
matics and the resultant static stress intensity factor of the former was
considered the dynamic stress intensity factor of the latter [2,5]. Error
estimates for using a near-field stress to extract the Mode I dynamic stress
intensity factor have been made by several investigators [6-8] and in partic-
ular, exhaustively by Rossmanith and Irwin [8].

Studies of the static isochromatic patterns under mixed mode loading
conditions, i.e. in the presence of combined KI and K crack ti3 deforma-

tions were made by C. W. Smith [9,10], Gdousto and Th&caris III and more
recently by Dally and Sanford [12,13] and Rossmanith [14]. These mixed mode
isochromatics are all characterized by their uns)miietric patterns with re-
spect to the straight crack line. It is also interestinJ to note that. the
shapes of these static isochromatics are strongly influenced by the higher
order terms, i.e. terms other than KI and K . In particular, the second
order term of a , commonly referred to as t4e remote stress component, will
distort the symntry of the isochromatics by significant stretchinq and



shortening of the upper avd luwer loop ;ysiii 114]. or ,i pure modt, I I
crack tip defonation, the isochromatic loo) straddles the crack tip as
shows in Figure 1 where a nearly pure shear state of stress is generated
around branched cracks. The mode II stress intensity factors K 11 , and re-
mote stress components oox, associated with these isochroatics re listed
in the following Table 1.

FOURTEENTH FRAME FIFTEENTH FRAME
448 j Seconds 482 /4 Seconds

(a) INNER BRANCH CRACK

FIFTEENTH FRAME SIXTEENTH FRAME
482 ks Seconds 531 us Seconds

(b) OUTER BRANCH CRACK

Fig. 1 Typical Mode II Dynamic Isochromatic Pa'tterns of Arresting Branched
Cracks. Homalite-IO0 Single Edge Notched Specimen Under Fixed-Grip
Loading. Specimien No. B5

Table 1. KII and o for Arrested Branch

Cracks in Fig. 1

(a) Inner Branch Crack

14th Frame 15th frame
K 0. 4 MlPa./ 0.44 Mllav/1
)o 0.32 MPa -0.04 Mlla

Ac i. i on r or ~ ox

RI6 G:J.AI (b) Outer Branch Crack
(DDC TABI
}nnxoun-ced 15th frame 16th frai
J."stif ic ition Y if 0.44 M~la',II 0.1 MlaiA1

- O. 11, MPd 0.(18 M1
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In actual dynamic photoelastic analysis of dynamic fracture, dynamic iso-
chromatics surrounding a running crack often exhibits moderate unsymmetry
but such photoelastic patterns were heretofore considered experimental ab-
normalities and were ignored by averaging the unsymmetric patterns during the
data reduction process. Careful postnortem inspection of the fracture speci-
mens, however, show that the slightly unsynunetric isochromatics are often
associated with slightvn curved crack paths which undoubtedly are caused
by the small dynamic Kit , coexisting with the dominating dynamic KYn value.
This effect is akin to the small but noticeable influence of a smali K, on
fatigue crack propagation reported fifteen years ago [15]. The exact flation
between the amount of crack curving and the dynamic K and possibly other
higher order terms of the near field stresses associated with the propagating
crack tip would thus provide a dynamic crack propagation law under mixed-mode
crack tip deformation similar to the KID versus A relation under consideration
for Mode I dynamic crack propaqation.

With the ,xelopment of a data reduction procedure for evaluating K11 to-
gether with K values, it became possible to investigate experimentaldy
the role of mixed mode dynamic near field stresses in dynamic fracture. The
authors used such procedure to evaluate the stress intensity factors associ-
ated with crack branching and crack curving [16]. The purpoe nof this Raper
is to use this data reduction procedure to further extract K and K I
from the previouly recorded dynamic isochromatics surrounding runnin crack
tips of curved and branched cracks.

DATA REDUCTION PROCEDURE

A three parameter, mixed mode, near-field state of stresses surrounding
a crack propagating at constant velocity [17,18] was used to derived a rela-

t~on between the Modes I and II dynamic stress intensity factors, K yn and
KT and the remote stress component o , and the dynamic isochroiatics.
THs relation together with an overdeterhfnistic, least-square method formed
the basiayqf a daOnreduction procedure for extracting the three dynamic para-
meters K and K and ax from the recorded dynamic photoelastic pattern
surrounding a run!lng craclx Further details of this data reduction proced-
ure can be found in Reference [16].

Figure 2 shows two frames out of a 16-frame dynamic photoelastic record
of a curving crack in a notch bend specimen 9.58mm (3/8 inch) thick, 88.9 x
400ram (3 1/2 x 15 3/4 inch) Homalite-lO0 beam with a blunt initial crack of
6.4mm (7/32 inch) in length and which was impact loaded by a drop weight of
1.48 kg (3.25 lbs) [19]. The crack emanated from the blunt saw-cut pre-
crack and propagated through much of the height of the beam prior to curving
as it approached the region of impact loading. Further details of the experi-
mental setup, crack velocity measurements and dynamic calibration of the
HBTlite-lRO material used are found in Reference [19]. Figure 3 shows the
K and K yn and (3 x variations obtained from the dynamic photoelastic
p~tterns p4Cedinnd immediately after crack curving shown in Fi(ure 2.
The negligible KIn with respect to the K W leads to Sleh1oation that the
important factor' overning the crack curving is not the K component of
the mixed mode local dynamic state of stress, but rather Ue ') component
which heretofore was ignored in past static analyses. The dirtional ta-
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bi-lity of the static Mode I crd(.k extension with o xas d dominant factor,
however, has been presented recently [20] and thus it is conceivable that
the second order term, i.e. (o in the dynamic near-field stresses, may also
govern the crack path of a ra idly propdqatinq crack. Crack CUrvinq aissocia-
ted with the large positive va ltivs iii Fiq. 3 tends0 to nfirn th it spvcu-
lation. ox

SEVENTH FRAME EIGHTH FRAME
175 jL Seconds 185 ± Seconds

Fig. 2 Typical Dynamic Isochroniatics or a Curved Crack. Hoialite-iQO notch
bend specimen. Specimen No. I-C042574

IL0.8 3

0.6-

t 0_

UCRACK PATH a

z K

35 40 45 50 55 60
PROJECTED CRACK LENGTH (MM)

Fig. 3 Modes I and 11 Dynamic Stress Intensity Factors of the Curved Crack
Shown in Fig. 2.
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Figure 4 shows a slightly slanted crack and the associated Kdyn Kdyn and
a in a fracturing, wedge-loaded, double cantilever beam specimin of-4'6mm
(98 inch) thick, 76.2 x 152.4m (3 x 6 inch) Homalite-lO( plate. Details of
this experiqRtdl seh, (tc., can be futrrd in Retiene i I I . %l'nie f luc.u-
ations in K and K throu)ut the crack propagation history is noted.
Again, the lonsistentiy low K1

' values and the large positive o associated
with significant crack curving tend to verify the previous findi g regarding
the importance of a in dynamic crack curving. It appears then that a frac-
ture dynamic theory omparwe to that of Ref. [20] and in the presence of
small but non-negligible K I" may provide insight to dynamic crack curving.

_ . 0.8
I

dyn
0_K 0.6 K-3

in0.4 1 CRACK PATH -2

0.2 \ -
- -

40 60 so0 10O0 120 140
PROJECTED CRACK LENGTH (mm)

Fig. 4 Modes I and 11 Dynamic Stress Intensity Factors of a Slanted Crack in
a Wedge-Loaded Rectangular Double Cantilever Specimen. Homalite-0
Specimen No. L31S-030274.

Figure 5 shows two dynamic photoelastic patterns of a branched crack
in a single edge-notched 9.5mm (3/8 inch) thick, 254 x 254mm (10 x 10 inch)
Homalite-lO0 plate subjected to fixed grip loading condition. Other branched
cracks from this same specimen were shown in Fi(I. I and the expv rimental ov,-
tails of this test can be tound in Reference [?] A, %ho)wn ii li(l. 1), withiii
the 49 micro-second interval, the propagating crack turned about 741) and ar-
rested. The %Rd Mode srcss intensit factors prior to this severe crack
kinking were K. " =O K. " = 0.41 MPa nd 0.18 MPa. After crack
kinking at whilh time the rack arrested, K T  8 .34 MPavi,, K H  0.08 MPavm
and ao = 1.4 MPa. This severe crack curvihg, 1'e. crack kihling can also
occur u nder the more traditional high KII1 state of stress.

5L
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FIFTEENTH FRAME
482 . Seconds

SIXTEENTH FRAME

531 k" Seconds

Fig. 5 Dynamic Isochromatics Prior To and After Crack Kinking. Homalite-lO0
Single Edge Notched Specimen Under Fixed Grip Loading. Specimen No.B5

The above three sets of data are obviously not sufficient tq establish a
dynamic crack curving criterion. Quantitative correlation of Ksyn KO vn and

Y with the degree of crack curving as well as the possible dependen on
cAck velocity are lacking at this time.

CRACK BRANCHING

FOURTH FRAME FFTH FRAME SEVENTH FRAME

102 ,u Seconds 134 u Seconds 212 K Seconds

Fig. 6 Typical Crack Branching Dynamic Photoelastic Pdtterns Holiialite-1(0O
Single Edge Notched Specimen (Fixed Grip Loading) Specimen No. B8.
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Figure 6 shows three frames out of a 16-frame dynamic photoelastic record
of a crack propagating and branching in a 3.2mm (1/8 inch) thick, 254 x 254mm
(10 x 10 inch) Homalite-QO0 plate loaded under fixed grip tension. Details
of the experiment can be found in Reference [22].

Figure 7 shows the Kdyn and Kdyn Sq; two branches of the cracks shown in
Figure 6. By extrapal.ting the'1 KI associated with tw8 y ranch cracks,
an after-branchng KY = 1.2 Pa vii (10.90 psivTn.) and Kl,' 0.45 MPa vi
(410 psi /Tji) are obtained. The branching stress 9lensity factor, i.e. im-
mediately prior to branching, is estimated to be Kt 2.03 MPa vrim (1850
psi /Tn).

U, 
Ut

3.0- 7 '-RIGHT BRANCH CRACK -

254,.. - LEFT BRANCH CRACK- --

2 2.5-
S .254mm

ul - 0.216 fm

2.0 -ug -0.20om

U dyfl

1.0-I-

z K0

,i 1.0 I , I ,

0 20 40 60 so 100 120
CRACK LErNOTM.o (mam)

Fig. 7 Modes I and 11 Dynamic Stress Intensity Factors ot the Branched
Cracks Shown in Fig. 6.

dy 05 dyn

Kr = 1.02 MPa A (920 psi /-n) and K Y = -0.2 MPa A/ (180 psi vin) are ob-
t~ine .._ The extrapolated dynamic strell in~i~sty factors prior to branching(1 50 psi -) and K 0

The average brnhinq and Dy amtr- r,n(hin ,tr,, itr,,y fa(cred

the above 8o ant se of for tch %imil(,xio rs.d r.porl
in Reference [15p yield the followin: [h

aydK'~ 0 ~ vi 92 s Vi)an ~ -. ~af 18 s vT)ar b



Branchiny Ky 2. 03 Mi AII 850 Ps i i n)

Kdyn*1II @

After Branching K 1.0 MPa (950 psi /n)

Kdyn = 0.2 MPa vi (180 psi i-)

2- ==-0-o
0 j-2254 Mm--.

u u.0. 152m m

t K1

z 1.0U)

z A
0 - dyn

120 140 160 0 200 220 240
CRACK LENGTH,a (mm)

Fig. 8 Model I and II Dynamic Stress Intensity Factors ot a branched Crack
in a Homalite-lO0 Single Edge Notched Specimen Under Fixed Grip
Loading. Specimen No. B9.

dyn
The above branching Kd data is ig1tical to that quoted in Reference

[1]. The ratio of before over after K . of 2.03/1.0 " 2.0 is consistent
with the postulate that crack branching occurs to dissipate fracture energy
along two propagating cracks buS ,s higher than the expected 2 value. It is
also interesting to note tha, K which is prior to crack branching regains
a small magnitude immediately ater crack branching and is consistent with
the static results of Reference [23].

DISCUSSIONS

The above dynamic photoelastic data on crack curving and crack branching
should be considered as preliminary since the data is not sufficient in quan-
tity for establishing a dynamic crack curving or a crack branching criteria.
Evaluation of the accumulated dynamic photoelastic experiments usinq Lhe newly
developed data reduction procedure is continuing and the new crack (urvinqJ
and crack branching dynamic photoelastic experiments are planned.
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